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Abstract-The paper presents a theoretical analysis of ice formation in a long circular tube cooled by 
external convection. The analysis utilizes a regular perturbation expansion for the temperature and inter- 
face location: first order solutions are developed in closed form. The effects of ice sensible heat and external 

convection on the interface shape and the pressure gradient are shown graphically. 

NOMENCLATURE 

T, 4, temperature; 
U, u, axial fluid velocity; 
P, p, pressure; 
R, r, radial displacement; 
A, a, radial displacement of interface; 
0,8, angular displacement ; 
X, x, axial displacement; 

time; 
area; 
thermal conductivity; 
density; 
kinematic viscosity; 
latent heat ; 
specific heat ; 
thermal diffusivity [k/p C,)] ; 
heat-transfer coefficient in coolant; 
Stefan number [ C,( 7” - Q/L] ; 
Biot number [hR,/k]: 
SteiBii/(l + Hi). 

Subscripts 
* 

1: 

fictitious surface; 
tube surface inside; 

0, tube centreline; 
c, external coolant; 

f9 ice-water interface ; 

W, water ; 

i, ice; 
ni, ice-free. 

Superscript A 
circumferential average. 

INTRODUCTION 

ONE OF the earliest attempts to analyze freezing 
in a cylindrical space was made in 1939 by 
Pekeris and Slichter [l] who considered ice 
formation on the outside of a long pipe the 
temperature of which varied in some prescribed 
manner beneath the freezing temperature. Their 
work, following the spirit of the classic paper by 
Stefan [2], employed a series expansion in which 
the zeroth order solution corresponded to the 
complete neglect of sensible heat in the ice: 
higher order terms incorporated the sensible 
heat, which was assumed to be a small fraction of 
the latent heat. Since that time several alternative 
approaches have appeared. London and Seban 
[3] used the concept of thermal circuitry to 
develop simple approximate solutions for both 
first and third kind boundary conditions. Kreith 
and Romie [4] presented analytic solutions for 
the situation in which the interface velocity 
remained constant and made use of an electric 
analogue to study the case of convective cooling. 
More recently, similar problems have been 
examined numerically [S, 61, using integral 
methods [7, 81 and by means of an analogue 
computer [9]. 

When ice begins to form in a convectively- 
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cooled pipe the internal flow of water and the 
rate of ice formation are, in general, interrelated: 
the presence of ice alters the flow rate which then 
alters the heat flux leaving the water, and this in 
turn changes the rate of ice formation. In recent 
years, several authors [l&13] have studied this 
interrelation and demonstrated its significance 
in the developing, or thermal-entry, region 
corresponding to which there is a developing 
ice layer. Clearly, if the tube is sufficiently long, 
the water superheat sufficiently low and/or the 
vigour of the convective cooling sufficiently 
great, then the importance of the developing 
region is reduced accordingly. It is the resulting 
fully-developed situation which is of principal 
interest in this paper. 

In the spirit of earlier work [l, 23 the analysis 
is based on the assumption that the latent heat 
dominates the sensible heat, though without the 
latter being zero. As will become apparent, the 
analysis is not limited by this restriction but the 
icing situation to which it ordinarily applies 
will be central in the discussion. Consideration 
will be given to the non-uniformity in the heat 
transfer coefficient characteristic of a transverse 
flow, The extent of this non-uniformity, as 
dictated by the external Reynolds number, will 
be shown to have an influence on the shape of the 
ice-water interface and the pressure gradient in 
the water. 

ICEGROWTH ANALYSIS 

Consider heat conduction in the ice produced 
by sudden and maintained immersion of a 
circular tube in a coolant (see Fig. 1). Since the 
tube is taken to be infinitely long the process is 
governed by the following differential equation : 

Upon introduction of the normalized variables 

R 
t = -, 

ki(Tf _- T,) .Bi,.~ 
RI ’ = piLR; 1 + Bi, 

equation (1) becomes 

where a = S&B&/(1 + Bi,). This simplifies im- 
mediately by virtue of the fact that 4x2 % 1, and 
therefore provided that r is not too close to 
zero (i.e. the ice is “thin”) it follows that 

8’4 1 a$ 86 
s+;&=az (3) 

is a good approximation. The solution of equa- 
tion (3) is subject to the conditions 

u, 
. 

FIG. 1. Co-ordinate system. 

W, 0, a) = 0 

$(a, r, 4 = 0 

$1 , 2, a) = - Bii[l + &l, T, a)]. 

Interface motion is described by a heat 
balance : thus 
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or 
AJ(r, r) = -F,(z) In 2 (9) 

da 1 + Biia~ 
- = -z(a,T,a), 
dz Bi, (4) 

the solution of which must satisfy the condition 

&(r,2) = F,(r)[r’ln& - r2(E-‘>1 

a(0, a) = 1 if the system is initially ice free. + F,(z) In I + F&) (10) 

In a great many situations the latent heat where 
dominates the sensible heat and hence Ste, 4 1. 
Under such circumstances it is clear that a is F (r) = Bi, 

equally small, or smaller, and this suggests a ’ 1 - Biilna,’ 
solution of equation (3) in the form 

W, z, a) = 40@, ~1 + 2 a” &@, 4. 

*=1 

da0 Fga, 

(5) 

Fr(r) = - X4’ 

Likewise, a solution to equation (4) may be 
sought in the same form: that is 

F,(r)=C$ +$(I +$-)I 

a@, a) = so(r) + jJ 
- 

a” a,(z). (6) 
F, (1 + F,) - -; 

a0 

Substituting equation (5) into equation (3) 
and 

generates an infinite set of differential equations 
for the temperature. The first two of these are: F&) = - 2 + 

I z&l +&(I +&)I. 

a240 1 WJO 
F+;a,=O 

The solutions (9) and (10) are incomplete 
because they contain a0 and a, which are un- 

(7) available a priori. However, these contributions 
to the interface location may be found by substi- 
tution of equations (5) and (6) into equation (4): 
whence 

which are to be satisfied subject to the conditions 

40@, 0) = 0 

cbo(aoy 4 = 0 

%(l,r) = -Bh[l + +o(l, T)] 

h(r,O) =o t (8) The associated initial conditions are: 

da0 - = T$(a,,T) 
dz I (11) 

. 

h(ao,4 = a’0 -4 ar (a,, 4 
so(O) = 1 

aI(O) = 0. 
(12) 

F(l,t) = - Bii (b1(1, z). 
J 

Using equation (9) with the first of equations 
(11) gives 

Solutions of equations (7) which meet the above 
requirements are: 

da0 1 + Bi, F, 
dz=-Bi,*a, (13) 
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which integrates immediately to give 100 

Bi.+2 
-a,Z,* * (14) 

1 
---- *,+e =(-J 

080 
- - - Anomalous 

Now using equations (9), (10) and (13) the 
second of equations (11) may be written in the 
form 

1 + Bii 
a1 =-q-- 

Fo Fo2 Fo3 Fo3 
y+4+4-4a,Z 

++$(l+&)]} 
which integrates readily to give 

060 

0 0 IO 020 0 30 040 0 

Time, T a 

060 

Time, r b 

“‘T 

FIG. 3. The effect ofsensible heat and convection on icegrowth. 

(a) Ste = 0.10. 

(b) Ste = 0.30. 
0 0 IO 0 20 0 30 040 0 50 

Time, T numbers and Fig. 3 shows the effect of Stefan 
FIG. 2. First-order interface correction. number and Biot number on interface growth. 

Since equations (14) and (15) give z and a, as PRESSURE DROP ANALYSIS 

functions of a, it follows that both a, and a, can Under conditions which produce a close 
be expressed as functions of r. Figure 2 reveals approximation to an ax&symmetric system, the 
the time-dependency of a, for various Biot results of the previous section may be used to 
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predict the shape of the ice-water interface and 
generated by circumferential variations in heat 
transfer coefficient i.e. in the Biot number. This ap ap ap 

is accomplished using established data for ax=ax ax”i’ I( > 
transverse flow over an isothermal cylinder at 
various values of the external Reynolds number It is clear from Fig. 4 that the interface does 
[14]. Figure 4 shows progressive changes in not generally possess a regular shape and there- 
the size and shape of the interface for two fore it is necessary to use a technique capable of 
selected Reynolds numbers. solving equation (16) within arbitrarily-shaped 

Reynolds number ~23 Reynolds number = I IO 000 
Stefon number =O.lO Stefon number x0.10 

8;. =0.013 L$= I.48 

ir 
OW 

FIG. 4. Ice growth in a transverse air flow. 

During growth of the ice shell any water 
flowing in the tube experiences an increasing 
resistance attributable to a continual decrease 
in the area through which it must pass. This 
poses the question of how the interface growth 
changes the pressure drop. Knowing the inter- 
face shape at any time it now remains to calculate 
the corresponding pressure gradient as described 
by the equation? 

sap a2u i at4 1 a% 
-= -- 
ax e+<ar,+47C2r’,a82 (16) 

where 
2 ap 

u=u--ff - P( ) 4cc ax ni 

I* = R/R, 

7 Neglect of aximuthal variations is not acceptable in the 
water because it flows in the vicinity of r = 0. Velocity 
transients are negligible in water if a 4 1. 

surfaces. Of several available techniques which 
might be applied [15-171 that of Sparrow and 
Haji-Sheikh appears to be the most general: 
it is semi-analytic, i.e. analytic in formulation 
but numerical in execution. None of these 
techniques will be used here and instead it is 
proposed to develop an alternative semi-analytic 
method, similar to that employed by Boley [18], 
which has the merit of relative simplicity. 
This method treats the region of interest as an 
interior part of a larger fictitious region of any 
convenient size and shape. The solution to 
equation (16) is then readily found for the larger 
region and adjusted, through the outer boundary 
values, until values at the surface of the inner 
region satisfy the boundary conditions of the 
problem originally specified. The (larger region) 
solution so obtained then contains the (inner 
region) solution to the original problem. 

Consider the solution of equation (16) in the 
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imbedded region defined by the inner broken 
curve shown in Fig. 1. This region represents the 
area available for the flow of water and is an 
interior part of the larger region bounded by the 
circle radius R,. As indicated, the circular outer 
boundary is divided into a number of segments, 
taken equal for convenience. Each of these 
segmental arcs is assumed to have a velocity uj, 
the magnitude and sign of which has to be 
determined. The velocity distribution resulting 
solely from the motion of any given arc is readily 
found and by superposition it is clear that for 
m equally-wide segments the velocity field is 
given by 

U(I*, 0) = -g (1 - I:) - f lJjfjtr*, e, (17) 
j=l 

around the ice-water interface is zero. This 
condition is satisfied when 

j$l ujfi(a,c, 4) = -g(l - a*k2) (18) 

where a, = A/R,, and (Q, 0,) are any of m 
appropriate interface coordinate pairs. It is 
evident that equations (18) form of a set of m 
linear algebraic equations relating the adjustable 
arc velocities uj to any given set of interface 
radii a*k, or ak. Thus for any interface size and 
shape a/representative set of uk may be chosen 
and used to determine the set of uj which will 
produce a solution to equation (16) with a no- 
slip contour passing through the chosen uk. 

As written, equation (18) cannot be solved 
unless the pressure gradient is specified. To 
circumvent this difficulty equation (17) is re- 

FIG. 5. 

where 

The effect of sensible heat and convection on pressure 
gradient. 

written as 

f&r*, e) = t + 2 f G si:y’m) cos n 

n=1 
u(r*, 0) = -$ G(r,, 0) 

thus permitting the calculation of uj/@p/~x) 
instead of Ui in equation (18). The variation of 
ap/& may now be found from the volumetric 
flow rate given by 

This solution is valid within the interior region 
and represents the solution of the original 
physical problem if, and only if, the velocity Q=JUdS 
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For a constant flow rate this may be equated to 
the ice-free value, 

Qni = -T(g) ,.;. 
n* 

Hence 

G(r*, 0) ds,. 

The tacit assumption in the above analysis is 
that R, is fixed at a value great enough to ensure 
convergence of fj(r*, 0) but small enough to 
permit the motion of the arcs around the 
fictitious boundary to exert sufficient influence 
at the actual boundary. In dealing with the 
changing size and shape of the ice-water inter- 
face it was considered worthwhile re-establishing 
R, for each value of z at which the pressure 
drop was determined. 

Sfe =O,lO 

I I I 
0 0.10 O-20 0,30 0 

Time, : 

FIG. 6. Pressure steepening in a transverse air flow. 

Figure 5 reveals the steepening of the pressure 
field for various representative values of the 
Stefan and Biot numbers under uniform external 
convection. Figure 6 shows similar curves for 
each of two transverse flows incorporating non- 

uniform convection under the same conditions 
considered earlier. 

DISCUSSIONS AND CONCLUSIONS 

The analysis assumes that the water is not 
superheated which implies that the pipe is 
suffkiently long to allow the withdrawal of any 
inlet superheat, or that the inlet temperature is 
the freezing temperature. In addition, viscous 
dissipation has been neglected, thus implying 
that 

U,, 6 lOO(Ste, Bii)* m/s. 

It is clear from this that dissipation will not be 
important unless Stei Bii (and hence CX) is very 
small and/or the water velocity is extremely 
high. For a fmed flow rate, the latter condition 
undoubtedly occurs when the ice-water inter- 
face approaches the axis of the tube and because 
of this the results are inaccurate when the water 
occupies only a small region close to the axis. 

The effect of ice sensible heat and external 
convection on ice growth under uniform con- 
ditions is shown in Fig. 3. The limiting case of 
zero Stefan number is essentially that treated 
by London and Seban [3] and in effect con- 
tains the full range of permissible Biot numbers: 
it should be noted that r contains Bi, and there- 
fore differs for each Biot number. The effect of 
the sensible heat in the ice is revealed by com- 
paring these results with others for which 
Stei # 0. Since the results are generally accurate 
to a2 a somewhat arbitrary upper limit of Stei = 
0.3 ensures that, regardless of the Biot number, 
inaccuracies of order 10 per cent will not be 
exceeded and Fig. 3(b) shows these results. It is 
immediately evident that sensible heat of this 
magnitude does not greatly alter the rate of 
ice growth and that the greatest effect is felt at 
high Biot numbers, as one might expect. The 
minima revealed are diffkult to explain on 
physical grounds and results beyond these 
points are considered unreliable: this type of 
behaviour stems from truncation of the pertur- 
bation expansion. Such a limitation is, however, 
quite small because the values of r or a at which 
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first order accuracy is unacceptable are generally 
beyond the scope of the analysis for other 
reasons; namely, the neglect of viscous dissipa- 
tion and circumferential conduction. 

It is worth noting that a Stefan number of @3 
corresponds to a temperature of -48°C which, 
although it lies within the meteorological 
realm, is a value below which the atmospheric 
temperature does not remain too long.? Obvi- 
ously, higher Stefan numbers would imply an 
even greater sensible-heat effect but the analysis 
cannot be used to accurately predict this unless 
a G 1. Since the perturbation expansion is in 
c1 it becomes especially accurate as an adiabatic 
boundary condition is approached, i.e. Bii + 0. 
Under this condition the interface equation 
reduces to the simple form 

a = (1 - 2~)~. (19) 

This asymptote is very close to the result shown 
in Fig. 3 for Bii = 10m4. It is worth emphasizing 
that this expression is independent of Stefan 
number. As a simple explicit form, equation (19) 
would be useful in the determination of the 
interface shape and growth from any empirical 
or analytic expressions for the Biot number 
when the latter is much less than unity. It is 
interesting to note that under uniform convec- 
tion equation (19) leads to the asymptotic 
pressure gradient relation 

dP 1 

‘;i;l = (1 - 22)2 

though it should be added that viscous dissipa- 
tion could well play an important role under 
these limiting conditions. 

If the tube is immersed in a transverse flow 
the convection system does not exhibit uni- 
formity as the heat-transfer coefficient varies 
circumferentially in a manner which depends 
upon both the external Reynolds number and 
the Prandtl number of the coolant. Figure 4 
shows representative ice-water interface pro- 

t Exceptions to this may be found in many polar and 
sub-polar regions. 

files resulting from an air flow at two very 
different Reynolds numbers : the convection 
data are taken from [14]. Figure 4a describes 
the lower Reynolds number situation in which 
moderate variations in the local Biot (or 
Nusselt) number result in significant variations 
in ice thickness, as the low mean Biot number 
would suggest. The interface geometry during 
the time interval considered appears to be 
perfectly compatible with the assumption of 
quasi-radial symmetry though the validity of 
such an assumption generally depends upon the 
circumferential variations in the heat-transfer 
coefficient. 

Similar results for a much higher Reynolds 
number are shown in Fig. 4b which reveals that 
variations in ice thickness are less pronounced 
at a higher mean Biot number: as Bi, -+ co it is 
clear from Fig. 3 that variations would vanish 
entirely. In this particular example the greatest 
heat-transfer coefficient occurs at the trailing 
stagnation point and therefore the ice which 
first appears at the tube axis would approach 
from the rear. As the figure indicates the radial- 
symmetry approximation is doubtful as that 
moment is approached. 

One of the principal objections to the presence 
of ice in a water pipe is the reduced flow area 
which it leaves. This implies that flow rates will 
be reduced or pressure gradients increased, 
or both. For fixed flow rate conditions the ratio 
of the pressure gradient to its initial value is 
shown in Fig. 5 for uniform convection. Again 
the effect of sensible heat is seen to be rather less 
than that of external convection. 

Figure 6 displays the effect of non-uniform 
convection for the same conditions described 
in Fig. 4. It is immediately evident from Fig. 6 
that for the time interval considered there is 
little difference between the pressure gradient 
for non-uniform convection and the correspond- 
ing gradient assuming an average (constant) 
Biot number. This suggests that the pressure 
drop could be calculated quite accurately using 
the hydraulic mean diameter of the interface. 
Since the latter will not likely possess sharp 
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comers it is apparent that the same conclusion 
would apply to a turbulent flow. 

In summary, it might be mentioned that the 
analysis is valid for any external coolant, the air 
results shown in Fig. 4 serving merely as 
examples. Similarly, the treatment is by no 
means restricted to ice and water though such a 
system is of great interest. The entire paper is a 
discussion of the fully-developed situation which 
may be regarded as the asymptote of the entry- 
region problem: the latter may possess a steady- 
state limit without freeze-over but in the 
absence of viscous dissipation the fully- 
developed problem is essentially a transient 
situation in which all the water is eventually 
frozen. The time scale chosen for this transient 
problem facilitates the discussion of the limiting 
cases of infinite heat-transfer coefficient and 
zero heat-transfer coeffkient together with 
every situation in between. 
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ANALYSE DE LA FORMATION PLEINEMENT DJh’ELOPPeE DE GLACE DANS UN 
TUBE CIRCULAIRE REFROIDI PAR CONVECTION 

R&sum&-L’article presente une analyse thtorique de la formation de glace dans un long tube circulaire, 
refroidi par convection exteme. L’analyse utilise un dtveloppement regulier de perturbation pour la 
temperature et a l’interface: des solutions de premier ordre sont don&es sous une forme litmrale. On 
montre, graphiquement, l’effet de la chaleur latente de la glace et la convection externe sur la forme de 

l’interface et sur le gradient de pression. 
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ANALYSE DER VOLLAUSGEBILDETEN EISBILDUNG IN EINEM KONVEKTIV 
GEKUHLTEN ROHR MIT KREISQUERSCHNITT 

Zusammenfassung-Die Arbeit liefert eine theoretische Analyse der Eisbildung in einem langen Rohr mit 
Kreisquerschnitt. das durch Konvektion von aussen gekiihlt wird. Zur Berechnung der Temperaturvertei- 
lung und der Lage der Phasengrenze wird die Methode der Storungsrechnung benutzt. Ldsungen erster 
Ordnung werden in geschlossener Form entwickelt. Der Einfluss von fiihlbarer Warme in Eiz und Busserer 

Konvektion auf die Form der Phasengrenze und auf den Druckgradienten wird graphisch gezeigt. 

BHAJIM3 IIOJIHOCTbIO PA3BHTOI’O IIPOHECCA OBPA30BAHBH JIbfiA 
R KOHBEKTBBHO OXJIAHJJJAEMOH TPYBE 

AHHOT~QIIR-B CTaTbe npOBOJ((aTCR TeOpeTWIeCKHfi aHaJIH3 06pa30BaHMH nbaa B ~JIIJHHO~~ 

KpyI'JIOtiTpy6e,OXJIaHE~aeMO~BHeIIIHe~KOHBeKLWeti. B aHaJIki3e&NIOJib3yTCHIIpe~CTaBJIeHkle 
TeMnepaTypbIR pacnonoweHaH nOBepXHOCTl4 pas~ena$asBBH~eperyJrRpKbIxB03MyqeHntl. 

PeIIIeHHH IlepBOfO IIpI46JIHHteHIUI npeRCTaBJIeHbI B 3aMKHyTOM Bllne. npS%BeneH rpa@K 

3aBwnhfocTM #10p~bI noBepxHocTs4 paagena rpanHeaTa gasnewrrr OT TeMnepaTypbl nbna II 

BHeIIIHefi KOHBeKqEiH. 


